Point mutations of two arginine residues in the Streptomyces R61 DD-peptidase.
نویسندگان
چکیده
Incubation of the exocellular DD-carboxypeptidase/transpeptidase of Streptomyces R61 with phenylglyoxal resulted in a time-dependent decrease in the enzyme activity. This inactivation was demonstrated to be due to modification of the Arg-99 side chain. In consequence, the role of that residue was investigated by site-directed mutagenesis. Mutation of Arg-99 into leucine appeared to be highly detrimental to enzyme stability, reflecting a determining structural role for this residue. The conserved Arg-103 residue was also substituted by using site-directed mutagenesis. The modification to a serine residue yielded a stable enzyme, the catalytic properties of which were similar to those of the wild-type enzyme. Thus Arg-103, although strictly conserved or replaced by a lysine residue in most of the active-site penicillin-recognizing proteins, did not appear to fulfil any essential role in either the enzyme activity or structure.
منابع مشابه
Importance of the two tryptophan residues in the Streptomyces R61 exocellular DD-peptidase.
Modification of the Streptomyces R61 DD-peptidase by N-bromosuccinimide resulted in a rapid loss of enzyme activity. In consequence, the role of the enzyme's two tryptophan residues was investigated by site-directed mutagenesis. Trp271 was replaced by Leu. The modification yielded a stable enzyme whose structural and catalytic properties were similar to those of the wild-type protein. Thus the ...
متن کاملSite-directed mutagenesis of the Streptomyces R61 DD-peptidase. Catalytic function of the conserved residues around the active site and a comparison with class-A and class-C beta-lactamases.
The importance of various residues in the Streptomyces R61 penicillin-sensitive DD-peptidase has been assessed by site-directed mutagenesis. The replacement of the active Ser62 by a Cys residue yielded an inactive protein which was also unable to recognize penicillin. The activity of the Lys65----Arg mutant with the peptide and thiolester substrates was decreased 100-200-fold and the rate of pe...
متن کاملImportance of the His-298 residue in the catalytic mechanism of the Streptomyces R61 extracellular DD-peptidase.
Among the active-site-serine penicillin-recognizing proteins, the Streptomyces R61 extracellular DD-peptidase is the only one to have a His-Thr-Gly sequence [instead of Lys-Thr(Ser)-Gly] in 'box' VII. The His residue was replaced by Gln or Lys. Both mutations induced a marked decrease in the rates of both tripeptide substrate hydrolysis and acylation by benzylpenicillin and cephalosporin C. The...
متن کاملThe precursor of the Streptomyces R61 DD-peptidase containing a C-terminal extension is inactive.
The Streptomyces R61 DD-peptidase gene encodes a 26-residue C-terminal extension which is not found in the mature protein. When the gene was expressed in Escherichia coli, the extension was not cleaved and the precursor protein was not enzymatically active. It also reacted with penicillins significantly more slowly than the mature protein. The introduction of a 'stop' codon after that correspon...
متن کاملMechanism of action of DD-peptidases: role of asparagine-161 in the Streptomyces R61 DD-peptidase.
The role of residue Asn-161 in the interaction between the Streptomyces R61 DD-peptidase and various substrates or beta-lactam inactivators was probed by site-directed mutagenesis. The residue was successively replaced by serine and alanine. In the first case, acylation rates were mainly affected with the peptide and ester substrates but not with the thiol-ester substrates and beta-lactams. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 283 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1992